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I. INTRODUCTION 5 ~ Ts 9

Because a superconductor is diamagnetic, it experiences a force when immersed
in a nonuniform magnetic field. This Report gives the result of the calculation of
the force acting on a sphere of zero permeability in an arbitrary magnetic field.
The solution is obtained by expressing the applied field in a series of complete
spherical harmonic functions, determining the induced field required to satisfy the
boundary condition B,,m. = 0, then integrating the Maxwell stress tensor over
the sphere’s surface. The final result appears as sums of products of the expansion
coefficients of the applied field. To make the result more useful, it is also shown
how to express the field due to an array of coils having concurrent axes in a series
of spherical harmonics and, for the purpose of computing restoring forces, the
applied field is expanded in a Taylor series expansion in the displacements. Two
simple examples are shown.
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ll. SPHERICAL HARMONIC FUNCTIONS

The complete set of normalized spherical harmonic functions

Y7 () = (D) ominb [@1 + 1) (1 — |m])l/2( + |m|)1]*

where

1 dnm
P&m’ (‘U.) = _l (l - ® )I “ dﬂh]m} ( - 1)l

is chosen for representing the magnetic field because of
its appropriateness to a spherical boundary and because
of the following useful properties (Ref. 1):
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ll. MAXWELL STRESS TENSOR

The force on a permeable body is found by integrating
the Maxwell stress tensor over its surface:

BB — 1 B*1
F:ﬁ——Tj——-ds (13)

Given a perfect Meissner effect, B,,,m.; =0 at the surface

IV. EXPRESSION FOR THE MAGNETIC FIELD

The scalar potential @, of the applied field B, is ex-
pressed as an expansion in complete spherical harmonic
functions about the center of the sphere as an origin (see
Fig. 1 for the coordinate system):

Z blm rl len ("‘, d))

I,m

-B,=Vao, =V

The induced field resulting from the Meissner effect can
be written

—B, =V ¥ ainr Y7 (1, 9)
l,m

The induced field combines with the applied field to
satisfy the boundary condition B,orm« = 0 at the surface
of the superconductor. Hence

- Bnormal

0
= =2, bt + amr ') Y7 (u, ¢) =0
2
atr =R

which implies
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p=cosf=1

[}

Fig. 1. Coordinates for analysis of
magnetic force

Then the resultant scalar potential is

l R:l+1
Dr(r,p,p) = l}: bin (fl + 71 717) Y7 (ue)

and the resultant field is
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At r = R:
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R 6 R oo

by virtue of the boundary condition. Hence the field
squared on the sphere is given by

L L[N g (20N
B: = R [(80) + csc G(qu):l

ol + 1 N
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where

V. EXPANSION OF B7 IN SPHERICAL HARMONICS

The principal difficulty in the calculation is to express B2 in a series of products
of spherical harmonics so as to be able to take advantage of the orthogonality of
the functions in performing the integration for force. The following observation
greatly facilitates this difficulty:
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To obtain products of the form Y7* Y? , note that & = ®*, so that
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Consequently the field squared at the sphere’s surface can be written

21+1 2p+1 .

B; = I+1 p+1 7im

l,m,p,q

by REPE(HY HY Y- Y0 + mg Y7* X)) (15)

VI. EVALUATION OF THE COMPONENTS OF FORCE

The z-component of force is computed from the integral

F,.= ~ L B2 cos 8 Rz dud¢
D T
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where use has been made of Eq. (14), (15), and (6). The orthogonality relation
(2) makes the integration trivial. After evaluating the constants from Eq.(12), and
combining terms, the result is
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The x- and y-components of force are most readily evaluated by first computing
the integrals

F, + iF, —--———//B“smOeW’RZd,ud(ﬁ
2p4

F, —iF, = — m//BZSinae_i"’de,u.d(b

in view of the relations (7) and (8).

After straightforward, though tedious, manipulation, the following result is
obtained:

1. [@L+DEL+ 31"
4y, o I+ + 92

F, = R bt (b a2 + 3+ 2m)[(1 —m + 2)(l —m + 1)]*
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+ complex conjugate  (17)
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i [RI+1)RI+3)]1™ ..., 1. ) . . v

+ broamall + 1+ 2m)[(1 + m + 2 + m + 1)]*)

+ complex conjugate  (18)

(If B2 is written as = Ay, Y., (4, ¢), where A, = ffB:Y " dude, then the com-
ponents of force are easily seen to be

% \ 3
R: [ 8r\"
Fz+2Fy_—__2,u.—0<—3_>Au
—R* (8 \*
F,- 1Fy:_(—3_'> Al-—l)
Lo

Vil. RESTORING FORCES

In assessing the stability of a magnetic suspension it is
necessary to compute restoring forces for small displace-
ments from an assumed equilibrium position. If the sphere &
is displaced relative to the applied field then it is neces-
sary to express the field relative to the new origin in
order to apply the formulas of Section VI. This transfor-
mation is performed by expanding the potential of the
applied field in a Taylor series.

The potential at point P is
& (X0, Y0,20) = u(x + 8x,y + 8y, z + 8z)

A A A
= Ou(x,y,2) + V @uls o (32 + Syj + 8zK)
(19) 2

where x,, y,, z, are the coordinates of a field point P
referred to the initial origin 0,, while x, y, z are the co-

ordinates of the same point referred to a subsequent 8,
position 0 of the center of the sphere, displaced by

8x, 8y, 8z (see Fig. 2). In terms of spherical coordinates

referenced to these origins, Eq. (19) is written 0O

(IH at P = Z blm T(l) Y;n (P«o, ¢(l) = Z blm rl len (.‘"; ¢)

%o

A A A
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(19a) Fig. 2. Field coordinates relative to displaced origins
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where

The derivations are evaluated by reference to Eq. (9), (10), (11), and (12):
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After evaluating constants and grouping terms, the above expression reduces to
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VIIl. SPHERICAL HARMONIC REPRESENTATION OF THE FIELD
DUE TO AN ARRAY OF CURRENT LOOPS

A frequently encountered situation in magnetic levita-
tion involves an array of coils whose axes intersect at a
common point. Smythe (Ref. 2) gives the expression for

-
~»

> ¢:0
f

Fig. 3. Coil coordinates

the vector potential generated by a single circular loop
in terms of Legendre polynomials. By setting — V & =
V X A, the scalar potential is readily deduced as

_ Ho Ii sin Yi r ! ’
o, = — —— —_— P! (cos i P
5 S5 (L) Py (cos ) P )
The resulting potential for an array of coils involving
intersecting axes can be transformed to a single axis by
means of the “addition theorem for spherical harmonics.”

4‘” +l *
Pl (l“’) = m ; Y;n (,U«i’ ¢l) Y’ln (:U" (b)

Figure 3 depicts the coil coordinates. The resulting exp-
ression for the scalar potential is

Gy = Z blm r! Y;n (/"a ¢)

l,m

. 211’ o I’i . 1 rm*
blm - = Xl: l—('m S vy, Pl (COS Yi) )l (l‘-i, ¢L)

Xl. EXAMPLE OF A TILTED GRADIENT FIELD

Consider the field given by

P, = Z- b:m r* Yzl (My (ib)

H -2

4\ " .
b., = 3 Y™ (cos a, 0)

which, by direct comparison with the addition theorem,
is merely the field

. Vo | A N
D =7rY (u) = 72—(;) (22 — x* — ¢?)

rotated about p = 0, ¢ = /2 (the y axis) by an angle a.
This is the situation depicted in Fig. 4. That the origin
is a position of zero force can be seen by examining Eq.
(16), (17), and (18). Restoring forces are found by cal-
culating the 8;,, from Eq. (20):

Va
Bio = (-2-) [3sinacosadx + (3 cos?a — 1) 8z]

1 3
+ (__2)1/2 oy — o

£2 ]
B = (%) {[2”2 - —2%2 cos2a}8x

1 3
+ (_2)’/2 8y + 21/2

sin a cos a Sz}

sin o Cos o SZ}

-

Bz = 5 (3cos*a — 1)

3 Va X
B = — <§> sinacosa = — By,

E% )
Bez = (%‘) sin® a = B2
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Fig. 4. Stability of levitation in a titited gradient field

then inserting these values into Eq. (16), (17), and (18), with the results:

5 R, . N : o
F.= - 35— [(3cos’a +1)8z + 3sinacosa 8]

b T ’

5 R _, , 5 ‘ : .
F,=— 5 — [(4 — 3cos®a) 8 + 3 sin a cos a 8z]

2 o

5 R?
FZ/ - - 5 81/

2 My

Since the virtual work function
A A A
—F = (8xi + 8yj + 8zk)

is positive definite (for any value of ), the gradient-field configuration produces
a stable magnetic levitation.
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X. EXAMPLE OF CROSSED GRADIENT FIELDS

Consider the field given by

0= 1Y (4, ¢) + 91

[~ 2 o+ (5) | itme + Y5 0] s
5

=3 (%) [eF = e -y - 2]

These are two Y? fields crossed at right angles. The origin is a position of zero
force. The values for the g8, are

3 Va 7
— =9 — L
(3 wom(e- 1)

3 Va 1 1
('g) .,311:?7;(1—2q)8x+(—_—2)-;/;(1 + ) 8y

(3) =g @ Da+ 4y

5
-1-1
Bz =1 )
B =0=8.
3\
Bex = <—8_ 7 = B
and the restoring forces are
10 R® »
F.= — —4-—(2—q)~8z
o
Fo= 0B 1 oyex
4 p
Fo=—~WR 1 vy
4 pe

Such a field configuration is unstable only when 1 — 2y =0, 1+ 4 =0, or
2 — 4 = 0; i.e, when the coeflicients of x>, y*, z*, respectively, are zero in the

P

expression for @,

10
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NOMENCLATURE!
41077 L
spherical coordinates relative to the sphere )
cos 6 L,
radius of sphere
magnetic field (weber/m?) L.

applied field

scalar potential of applied field
induced field

scalar potential of induced field
B, + B, = total or resultant field
scalar potential of total field

normalized spherical harmonic function
(SHF) defined in Eq. (1)

coefficient in SHF expansion of &,
coeflicient in SHF expansion of &,
coeflicient in SHF expansion of displaced @,
coeflicient in SHF expansion of B2

the eratr——L isinei 12
operator = e\ 56" Y39 1 5in 6 342

I

Yi

Hi> i

ILm,p g
*
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the operator — i £—

o f 0 0
o2 4 2
the operator e (8 g Ticotd 6¢)

the operator e-i¢ (— % + icotd %)

(L% L., L,, and L. are familiar in quantum
mechanics as the total angular-momentum
squared operator, the z-component of
angular-momentum operator, the spin-
raising operator, and the spin-lowering op-
erator, respectively.)

current in ith current loop

semi-angle subtended at origin by ith cur-
rent loop (see Fig. 3)

spherical coordinates of center of ith cur-
rent loop

integers used as summation indices

denotes complex conjugates

IMKS units used throughout.
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SUBJECT: Errata for TR 32-806

Gentlemen:

It is requested that a change as noted below be made in your copy of

Jet Propulsion Laboratory Technical Report No. 32-806, entitled "Force
on a Superconducting Sphere in a Magnet Field: The General Case, " by
John T. Harding, dated September 1, 1965,

On page 3, the right-hand column under the heading "III. Maxwell
Stress Tensor' should read as follows:
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of a superconductor, Eq. (13) reduces to

:~2LM//Bzds (14)

where dS = R?dud¢ (cos 6k + sin 6 cos ¢i + sin 6 sin ¢jf)
for a sphere (k = the p = 1 direction, i = the p = 1,
¢ = O direction, j = the p = 1, $ = =/2 direction).
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